数学与哲学读后感600字
我用了一学年的时间断断续续,往往复复的终于读完了《数学与哲学》,这本张景中院士献给数学爱好者的书,我是读得“云里雾里”的,所以说反反复复。读一遍没弄懂,在读一遍,所以读的很慢。
读了这本书,还弄懂了这样一个问题——数学是一门研究数量关系的学科,哲学则是研究不同质之间相互关系的学科。也就是说,哲学是对具体的东西作抽象的研究,而数学是对抽象的东西作具体的研究。比如对于“哥德巴赫猜想”来说,它所要解决的问题是什么呢?说来很简单,它要解决的是“偶数与素数”之间的关系问题。这个问题究竟是一个数学问题还是一个哲学问题呢?事实上,偶数为两素数之和,它不是一个数学问题而是一个哲学问题。尽管这一关系式最早是由数学家提出来的,并且一直是作为数论难题遗留至今,但是,这一难题实质上是个哲学问题,是一个认识论方面的问题。它是体现在数论中的一个哲学问题。偶数与奇数,素数与合数,它们都是具有不同性质的数,相互之间的关系绝不是一种纯粹的数量关系,而是一种质的关系。所以数学思维方式对此才无能为力,事实上只有哲学思维方式才能给它以科学的证明。说白了,它的实质就是“一分为二”。因此,哥德巴赫猜想的实质是个哲学问题,是属于认识论上的问题,就是应该如何认识偶数与奇数(包括素数与积数)之间的关系问题。
最后用书中的一句话结尾,模糊的哲学与精确的数学——人类的望远镜与显微镜。
用将近一个月的时间终于囫囵吞枣读完了《数学与哲学》,这本张景中院士献给数学爱好者的书,我是读得“云里雾里”的,煞是费力。可能因为我不能算是数学爱好者,也可能因为我没学过高等数学,书中的一些数学知识我是一点儿都不懂。
由于具体的数学问题多如繁星,数学家往往整天埋头于解决数学问题,无暇关注数学发展中出现的“矛盾”。但数学史告诉我们,恰好是“矛盾”的一次次解决,才导致数学发展的飞跃与深化。张景中院士的《数学与哲学》就是对数学发展中这些重大的历史事件,用通俗的讲法向大众展示当时的争论内容与形势,及以后的解决办法及数学的飞跃发展。所以,通过这本书的阅读,我还是了解到了数学发展史上发生的一系列重大事件,比如,数学经历的三次“危机”、数学与哲学相互促进发展的过程,等等。
读了这本书,还弄懂了这样一个问题——数学是一门研究数量关系的学科,哲学则是研究不同质之间相互关系的学科。也就是说,哲学是对具体的东西作抽象的研究,而数学是对抽象的东西作具体的研究。比如对于“哥德巴赫猜想”来说,它所要解决的问题是什么呢?说来很简单,它要解决的是“偶数与素数”之间的关系问题。这个问题究竟是一个数学问题还是一个哲学问题呢?事实上,偶数为两素数之和,它不是一个数学问题而是一个哲学问题。
哲学曾经把整个宇宙作为自己的研究对象,那时,它是包罗万象的,数学只不过是算术和几何而已。但如今,数学的领域在扩大,哲学的地盘在缩小。
模糊的哲学与精确的数学——人类的望远镜与显微镜。
《数学与哲学》一书,书中主要内容包括了“万物皆数”观点的破灭与再生、哪种几何才是真的、变量·无穷小·量的鬼魂、自然数有多少、罗素悖论引起的轩然大波、数是什么、是真的但又不能证明等。由于具体的数学问题多如繁星,数学家往往整天埋头于解决数学问题,无暇关注数学发展中出现的“矛盾”。但数学史告诉我们,恰好是“矛盾”的一次次解决,才导致数学发展的飞跃与深化。张景中的书《数学与哲学》就是对数学发展中这些重大的历史事件,用通俗的讲法向大众展示当时的争论内容与形势,及以后的解决办法及数学的飞跃发展。例如关于数,是否仅有自然数及由它产生的有理数就够了。
看完这本书之后,我还查阅了一下张景中院士对于数学教学的观点,觉得也很受启发,比如他认为如果只是把课本编得简单一些,但考试仍然很难,那么学生就不会真正“减负”。他主张“多学少考”,课本不妨略深一点:如果学的深度不够,学生很难体会到数学的趣味;考试简单一些,孩子们才能在轻松中寻找数学的乐趣。此外,在小学和初中的课程设置中要加强对几何的学习,而不是像现在这样轻几何而重数学运算。美国是在数学教育方面花气力最大的国家,但是连美国人自己也承认他们的数学教育收效不大。
他认为,其中一个重要的原因就是他们从20世纪60年代开始在教材的编写中将几何砍掉得太多了。图形不是枯燥的,是容易理解的。一开始学数学,孩子们可能还不能理解数学的很多妙处,因此应该通过图形的运动变化吸引他们的兴趣。随着学习的深入,逐步引导孩子用代数、运算的方式直至微积分的方法解决几何问题。同样,教师对培养孩子们的数学兴趣能起到至关重要的作用。