范文
菜单

数据挖掘成功案例

时间: 07-31 栏目:案例
篇一:数据挖掘应用成功案例(2466字)

1电话收费和管理办法

加拿大BC省电话公司要求加拿大SimonFraser大学KDD研究组根据其拥有的十多年的客户数据,总结、分析并提出新的电话收费和管理办法,制定既有利于公司又有利于客户的优惠政策。

2竞技运动中的数据挖掘

美国著名的国家篮球队NBA的教练,利用IBM公司提供的数据挖掘工具临场决定替换队员。想象你是NBA的教练,你靠什么带领你的球队取得胜利呢?当然,最容易想到的是全场紧逼、交叉扯动和快速抢断等具体的战术和技术。但是今天,NBA的教练又有了他们的新式武器:数据挖掘。大约20个NBA球队使用了IBM公司开发的数据挖掘应用软件AdvancedScout系统来优化他们的战术组合。例如Scout就因为研究了魔术队队员不同的布阵安排,在与迈阿密热队的比赛中找到了获胜的机会。

----系统分析显示魔术队先发阵容中的两个后卫安佛尼。哈德卫(AnferneeHardaway)和伯兰。绍(BrianShaw)在前两场中被评为-17分,这意味着他俩在场上,本队输掉的分数比得到的分数多17分。然而,当哈德卫与替补后卫达利尔。阿姆斯创(DarrellArmstrong)组合时,魔术队得分为正14分。

----在下一场中,魔术队增加了阿姆斯创的上场时间。此着果然见效:阿姆斯创得了21分,哈德卫得了42分,魔术队以88比79获胜。魔术队在第四场让阿姆斯创进入先发阵容,再一次打败了热队。在第五场比赛中,这个靠数据挖掘支持的阵容没能拖住热队,但AdvancedScout毕竟帮助了魔术队赢得了打满5场,直到最后才决出胜负的机会。

----AdvancedScout是一个数据分析工具,教练可以用便携式电脑在家里或在路上挖掘存储在NBA中心的服务器上的数据。每一场比赛的事件都被统计分类,按得分、助攻、失误等等。时间标记让教练非常容易地通过搜索NBA比赛的录像来理解统计发现的含义。例如:教练通过AdvancedScout发现本队的球员在与对方一个球星对抗时有犯规纪录,他可以在对方球星与这个队员“头碰头”的瞬间分解双方接触的动作,进而设计合理的防守策略。

----AdvancedScout的开发人,因德帕尔。布罕德瑞,开发该应用时他正在IBM的ThomasJ。Watson研究中心当研究员,他演示了一个技术新手应该如何使用数据挖掘。布罕德瑞说:“教练们可以完全没有统计学的培训,但他们可以利用数据挖掘制定策略”。与此同时,另一个正式的体育联盟,国家曲棍球联盟,正在开发自己的数据挖掘应用NHL-ICE,联盟与IBM建立了一个技术型的合资公司,去年11月推出一个电子实时的比赛计分和统计系统。在原理上是一个与AdvancedScout相似的数据挖掘应用,可以让教练、广播员、新闻记者及球迷挖掘NHL的统计。当他们访问NHL的Web站点时,球迷能够使用该系统循环看联盟的比赛,同时广播员和新闻记者可以挖掘统计数据,找花边新闻为他们的实况评述添油加醋。

----当然,所有系统都有其局限性。所以不要期望这样的数据挖掘可以帮助一支球队找到赢得足球世界杯的策略。

3数据挖掘技术在商业银行中的应用

数据挖掘技术在美国银行金融领域应用广泛。金融事务需要搜集和处理大量数据,对这些数据进行分析,发现其数据模式及特征,然后可能发现某个客户、消费群体或组织的金融和商业兴趣,并可观察金融市场的变化趋势。商业银行业务的利润和风险是共存的。为了保证最大的利润和最小的风险,必须对帐户进行科学的分析和归类,并进行信用评估。Mellon银行使用IntelligentAgent数据挖掘软件提高销售和定价金融产品的精确度,如家庭普通贷款。零售信贷客户主要有两类,一类很少使用信贷限额(低循环者),另一类能够保持较高的未清余额(高循环者)。每一类都代表着销售的挑战。低循环者代表缺省和支出注销费用的危险性较低,但会带来极少的净收入或负收入,因为他们的服务费用几乎与高循环者的相同。银行常常为他们提供项目,鼓励他们更多地使用信贷限额或找到交叉销售高利润产品的机会。高循环者由高和中等危险元件构成。高危险分段具有支付缺省和注销费用的潜力。对于中等危险分段,销售项目的重点是留住可获利的客户并争取能带来相同利润的新客户。但根据新观点,用户的行为会随时间而变化。分析客户整个生命周期的费用和收入就可以看出谁是最具创利潜能的。Mellon银行认为“根据市场的某一部分进行定制”能够发现最终用户并将市场定位于这些用户。但是,要这么做就必须了解关于最终用户特点的信息。数据挖掘工具为Mellon银行提供了获取此类信息的途径。Mellon银行销售部在先期数据挖掘项目上使用IntelligenceAgent寻找信息,主要目的是确定现有Mellon用户购买特定附加产品:家庭普通信贷限额的倾向,利用该工具可生成用于检测的模型。据银行官员称:IntelligenceAgent可帮助用户增强其商业智能,如交往、分类或回归分析,依赖这些能力,可对那些有较高倾向购买银行产品、服务产品和服务的客户进行有目的的推销。该官员认为,该软件可反馈用于分析和决策的高质量信息,然后将信息输入产品的算法。IntelligenceAgent还有可定制能力。

美国Firstar银行使用Marksman数据挖掘工具,根据客户的消费模式预测何时为客户提供何种产品。Firstar银行市场调查和数据库营销部经理发现:公共数据库中存储着关于每位消费者的大量信息,关键是要透彻分析消费者投入到新产品中的原因,在数据库中找到一种模式,从而能够为每种新产品找到最合适的消费者。Marksman能读取800到1000个变量并且给它们赋值,根据消费者是否有家庭财产贷款、赊帐卡、存款证或其它储蓄、投资产品,将它们分成若干组,然后使用数据挖掘工具预测何时向每位消费者提供哪种产品。预测准客户的需要是美国商业银行的竞争优势。

4因特网筛选

最近,还有不少DMKD产品用来筛选因特网上的新闻,保护用户不受无聊电子邮件和商业推销的干扰,很受欢迎。

篇二:数据挖掘应用案例(620字)

蒙特利尔银行是加拿大历史最为悠久的银行,也是加拿大的第三大银行。在20世纪90年代中期,行业竞争的加剧导致该银行需要通过交叉销售来锁定1800万客户。银行智能化商业高级经理JanMrazek说,这反映了银行的一个新焦点--客户(而不是商品)。银行应该认识到客户需要什么产品以及如何推销这些产品,而不是等待人们来排队购买。然后,银行需要开发相应商品并进行营销活动,从而满足这些需求。

在应用数据挖掘之前,银行的销售代表必须于晚上6点至9点在特定地区通过电话向客户推销产品。但是,正如每个处于接受端的人所了解的那样,大多数人在工作结束后对于兜售并不感兴趣。因此,在晚餐时间进行电话推销的反馈率非常低。

几年前,该银行开始采用IBMDB2IntelligentMinerScoring,基于银行账户余额、客户已拥有的银行产品以及所处地点和信贷风险等标准来评价记录档案。这些评价可用于确定客户购买某一具体产品的可能性。该系统能够通过浏览器窗口进行观察,使得管理人员不必分析基础数据,因此非常适合于非统计人员。

“我们对客户的财务行为习惯及其对银行收益率的影响有了更深入的了解。现在,当进行更具针对性的营销活动时,银行能够区别对待不同的客户群,以提升产品和服务质量,同时还能制订适当的价格和设计各种奖励方案,甚至确定利息费用。“

蒙特利尔银行的数据挖掘工具为管理人员提供了大量信息,从而帮助他们对于从营销到产品设计的任何事情进行决策。

篇三:数据挖掘经典案例(3900字)

当前,市场竞争异常激烈,各商家企业为了能在竞争中占据优势,费劲心思。使用过OLAP技术的企业都知道,OLAP技术能给企业带来新的生机和活力。OLAP技术把企业大量的数据变成了客户需要的信息,把这些信息变成了价值,提高了企业的产值和效益,增强了客户自身的竞争实力。

“啤酒与尿布”的故事家喻户晓,在IT界里,几乎是数据挖掘的代名词,那么各商家企业受了多少启发,数据挖掘又给他们带来了多少价值呢?

客户需求

客户面对大量的信息,用OLAP进行多维分析。如:一个网上书店,用OLAP技术可以浏览到什么时间,那个类别的客户买了多少书等信息,如果想动态的获得深层次的信息,比如:哪些书籍可以打包推荐,哪些书籍可以在销售中关联推出等等,就要用到数据挖掘技术了。

当客户在使用OLAP技术进行数据的多维分析的时候,联想到“啤酒与尿布”的故事,客户不禁会有疑问,能不能通过数据挖掘来对数据进行深层次的分析呢,能不能将数据挖掘和OLAP结合起来进行分析呢?

SQLServer2005数据挖掘:

SQLServer2005的DataMining是SQLServer2005分析服务(AnalysisServices)中的一部分。数据挖掘通常被称为“从大型数据库提取有效、可信和可行信息的过程”。换言之,数据挖掘派生数据中存在的模式和趋势。这些模式和趋势可以被收集在一起并定义为挖掘模型。挖掘模型可以应用于特定的业务方案,例如:预测销售额、向特定客户发送邮件、确定可能需要搭售的产品、查找客户将产品放入购物车的顺序序列。

Microsoft决策树算法、MicrosoftNaiveBayes算法、Microsoft聚类分析算法、Microsoft神经网络算法(SSAS),可以预测离散属性,例如,预测目标邮件活动的收件人是否会购买某个产品。

Microsoft决策树算法、Microsoft时序算法可以预测连续属性,预测连续属性,例如,预测下一年的销量。

Microsoft顺序分析和聚类分析算法预测顺序,例如,执行公司网站的点击流分析。

Microsoft关联算法、Microsoft决策树算法查找交易中的常见项的组,例如,使用市场篮分析来建议客户购买其他产品。

Microsoft聚类分析算法、Microsoft顺序分析和聚类分析算法,查找相似项的组,例如,将人口统计数据分割为组以便更好地理解属性之间的关系。

巅峰之旅之案例一:网上书店关联销售

提出问题

网上书店现在有了很强的市场和比较固定的大量的客户。为了促进网上书店的销售量的增长,各网上书店采取了各种方式,给客户提供更多更丰富的书籍,提供更优质服务,等方式吸引更多的读者。

是不是这样就够了呢?这里,给众多网上书店的商家们提供一种非常好的促进销售量增长,吸引读者的方法,就是关联销售分析。这种方法就是给客户提供其他的相关书籍,也就是在客户购买了一种书籍之后,推荐给客户其他的相关的书籍。这种措施的运用给他们带来了可观的效益。

首先必须明确的是,这里介绍的关联销售并不是,根据网上书店的销售记录进行的比例统计,也区别于简单的概率分析统计,是用的关联规则算法。“啤酒和尿布”的故事足以证明了该算法的强大功能和产生的震撼效果。

那么,怎么来实现这样一个效果呢?

解决步骤

首先,我们有数据源,也就是销售记录。这里我们做数据挖掘模型,要用到两张表,一张表是我们的会员,用会员ID号来代替;另一张表是我们那个会员买了什么书。

我们应用SQLServer2005的DataMining工具,建立数据挖掘模型。

具体步骤如下:

第一步:定义数据源。选取的为网上书店的销售记录数据源(最主要的是User表和Sales表)。

第二步:定义数据源视图。在此我们要建立好数据挖掘中事例表和嵌套表,并定义两者之间的关系,定义User为事例表(CaseTable),Sales为嵌套表(NestedTable)。

第三步:选取MicrosoftAssociationRules(关联规则)算法,建立挖掘模型。

第四步、设置算法参数,部署挖掘模型。

第五步、浏览察看挖掘模型。对于关联规则算法来说,三个查看的选项卡。

A:项集:“项集”选项卡显示被模型识别为经常发现一起出现的项集的列表。在这里指的是经过关联规则算法处理后,发现关联在一起的书籍的集合。

B:规则:“规则”选项卡显示关联算法发现的规则。“规则”选项卡包含一个具有以下列的网格:“概率”、“重要性”和“规则”。概率说明出现规则结果的可能性。重要性用于度量规则的用途。尽管规则出现的概率可能很高,但规则自身的用途可能并不重要。重要性列就是说明这一情况的。例如,如果每个项集都包含属性的某个特定状态,那么,即使概率非常高,预测状态的规则也并不重要。重要性越高,规则越重要。

C:关联网络:节点间的箭头代表项之间有关联。箭头的方向表示按照算法发现的规则确定的项之间的关联。

效果展示

1、我们可以看到在上图中,绿色的是我们选择的节点,橙色的是可以预测所选节点的节点,也就是说如果消费者买了《月光宝盒(2VCD)》的话,那么我们可以给该消费者推荐《乱世佳人(上集,2VCD)》。紫色的是和所选节点能够双向预测的,即买了《大圣娶亲》,推荐《乱世佳人(上集,2VCD)》;同样,买了《乱世佳人(上集,2VCD)》,推荐《大圣娶亲》。这样我们就很容易看到经过关联算法计算出来的书籍之间的关联性。如图3所示效果。

2、我们也可以通过写DMX语句来实现预测查询。

SELECT

PredictAssociation([User]。[Sales],include_statistics,10)

From

[User]

NATURALPREDICTIONJOIN

(SELECT(SELECT‘月光宝盒(2VCD)‘AS[BookName])AS[Sales])ASt

巅峰之旅之案例二:客户类别销售分析

这个案例的前提是我们已经建立好了一个OLAP的多维数据库Sales,事实表为FactInternetSales,有五个维度,分别是DimCurrency,DimCustomer,DimProduct,DimTime,DimPromotion。

提出问题

利用OLAP建立的多维数据库Sales,我们可以实现多角度的浏览和分析。例如:我们可以分析2004年第一季度的M生产线产品的销售量情况,还可以实现灵活的交叉分析,等等。但是,如果我们要分析,某个维度的多个属性的综合的销售量,例如:客户维度里有BirthDate、EnglishEducation、HouseOwnerFlag、NumberCarsOwned、YearlyIncome等属性,在多维数据库里面分析的时候,

我们可以把客户维度的NumberCarsOwned属性放在展示区域的行上,把度量值OrderQuantity放在列上,查看拥有0-4辆汽车的客户的订购所有产品的数量。同样,我们也可以类似的查看其他属性的情况。但是,如果我们要把客户维度的某些属性综合考虑来分类,例如:我们要把高收入、高学历、高消费的客户作为一个群体,把高收入,低学历、高消费的客户作为一个群体,等等,然后,基于这些群体来浏览分析,销售情况,如何来实现呢?

解决步骤

用过聚类算法的大概比较清楚,聚类算法,是用来给事物分类的。那么怎么用聚类算法的这个特性,和OLAP进行正和呢。请看下面这个案例:

第一步:建立挖掘模型。这里需要注意的是:以前我们在建立数据挖掘模型的时候是基于关系型数据源。

A:而在这里,我们要基于多维数据库Sales,选取维度DimCustomer为数据挖掘模型的数据源。

B:按照向导,选取事例键DimCustomer,

C:在选取事例级别列对话框里面,选择一些属性和度量值,我们这里选取EnglishEducation、HouseOwnerFlag、NumberCarsOwned、YearlyIncome、SalesAmount。如图5所示。

D:在完成对话框里面,我们输入挖掘结构名称CustomerSturcture,输入挖掘模型名称CustomerClustering。必须注意的是,一是一定要选择创建挖掘模型维度,输入挖掘模型维度的名称CustomerClustering;二是一定要选择使用挖掘模型维度创建多维数据集Sales_DM。

E:设置算法参数。

然后对创建的挖掘结构和挖掘模型进行处理。

此时,共享维度里面会自动添加了一个CustomerClustering维度,也就是数据挖掘维度。

第二步:处理CustomerClustering维度。

第三步:处理多维数据集Salse_DM。

处理后的多维数据集Sales_DM,就包含了数据挖掘维度CustomerClustering。这样,我们就可以把经过聚类算法分类后的客户维度,来进行多维数据分析。

效果展示

这些Cluster是我们用聚类算法建立的挖掘模型的维度成员,每个Cluster都是我们所选属性的一个综合的结果,但是代表着一个明显的特征。我们还可以在数据挖掘模型里面,对各个Cluster进行名称的标示,如Cluster1是高收入高消费高学历的群体,我们就可以给他命名,把所有的Cluster都命名为能代表本身特性的名称,这样,使得多为数据库的信息就更丰富了。

总结

在激烈的市场竞争中,要想把海量的数据转化为信息,提高自身的信息化建设水平,增强企业的核心竞争力,BI技术是您明智的选择。应用OLAP技术建立多维数据库,进行多维分析,并把数据挖掘算法应用于多维数据库中,会进一步增加信息量,让您掌握更多的市场先机。

为你推荐