范文
菜单

主成分分析法案例

时间: 08-02 栏目:案例
篇一:主成分分析法及案例分析(2205字)

在统计学中,主成分分析(principalcomponentsanalysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。主成分分析的主要作用体现在五个方面,第一,主成分分析能降低所研究的数据空间的维数。第二,可通过因子负荷的结论,弄清X变量间的某些关系。第三,可用于多为数据的一种图形表现方法。第四,可由主成分分析构造回归模型,即把各个主成分作为新自变量代替原来自变量做回归分析。第五,用主成分分析筛选回归变量。

案例分析:下表是关于全国31个省市的8项经济指标,以此为例,进行主成分分析。省份国内生产居民消费固定资产职工工资货物周转消费价格商品零售工业产值北京1394.892505519.018144373.9117.3112.6843.43天津920.112720345.466501342.8115.2110.6582.51河北2849.521258704.8748392033.3115.2115.81234.85山西1092.481250290.94721717.3116.9115.6697.25内蒙832.881387250.234134781.7117.5116.8419.39辽宁2793.372397387.9949111371.7116.11141840.55吉林1129.21872320.454430497.4115.2114.2762.47黑龙江2014.532334435.734145824.8116.1114.31240.37上海2462.575343996.489279207.4118.71131642.95江苏5155.2519261434.9559431025.5115.8114.32026.64浙江3524.7922491006.396619754.4116.6113.5916.59安徽2003.5812544744609908.3114.8112.7824.14福建2160.522320553.975857609.3115.2114.4433.67江西1205.111182282.844211411.7116.9115.9571.84山东5002.3415271229.5551451196.6117.6114.22207.69河南3002.741034670.3543441574.4116.5114.91367.92湖北2391.421527571.684685849120116.61220.72湖南2195.71408422.6147971011.8119115.5843.83广东5381.7226991639.838250656.5114111.61396.35广西1606.151314382.595105556118.4116.4554.97海南364.171814198.355340232.1113.5111.364.33四川35341261822.544645902.3118.51171431.81贵州630.07942150.844475301.1121.4117.2324.72云南1206.6812613345149310.4121.3118.1716.65西藏55.98111017.8773824.2117.3114.95.57陕西1000.031208300.274396500.9119117600.98甘肃553.351007114.815493507119.8116.5468.79青海165.31144547.76575361.6118116.3105.8宁夏169.75135561.985079121.8117.1115.3114.4新疆834.571469376.965348339119.7116.7428.76将数据输入SPSS软件,选择“分析”—“降维”—“因子分析”,在出现的对话框中进行以下步骤:第一步,将八个经济指标都转入到变量中去

篇二:主成分分析法案例(2212字)

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。

同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构 的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。 上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令其中为正交阵的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。

例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科 普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。

[编辑]

主成分分析法的基本原理。

主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。

主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Va(rF1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现再F2中,用数学语言表达就是要求Cov(F1,F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四第P个主成分。主成分分析的主要作用概括起来说,主成分分析主要由以下几个方面的作用。

1.主成分分析能降低所研究的数据空间的维数。即用研究m维的Y空间代替p维的X空间(m<p),而低维的Y空间代替 高维的x空间所损失的信息很少。即:使只有一个主成分Yl(即 m=1)时,这个Yl仍是使用全部X变量(p个)得到的。例如要计算Yl的均值也得使用全部x的均值。在所选的前m个主成分中,如果某个Xi的系数全部近似于零的话,就可以把这个Xi删除,这也是一种删除多余变量的方法。

2.有时可通过因子负荷aij的结论,弄清X变量间的某些关系。

3.多维数据的一种图形表示方法。我们知道当维数大于3时便不能画出几何图形,多元统计研究的问题大都多于3个变量。要把研究的问题用图形表示出来是不可能的。然而,经过主成分分析后,我们可以选取前两个主成分或其中某两个主成分,根据主成分的得分,画出n个样品在二维平面上的分布况,由图形可直观地看出各样品在主分量中的地位,进而还可以对样本进行分类处理,可以由图形发现远离大多数样本点的离群点。

4.由主成分分析法构造回归模型。即把各主成分作为新自变量代替原来自变量x做回归分析。

5.用主成分分析筛选回归变量。回归变量的选择有着重的实际意义,为了使模型本身易于做结构分析、控制和预报,好从原始变量所构成的子集合中选择最佳变量,构成最佳变量集合。用主成分分析筛选变量,可以用较少的计算量来选择量,获得选择最佳变量子集合的效果。

篇三:主成分分析法案例(2547字)

主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。在实际问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。

目录、简介、主要目的、分析步骤、应用分析、展开、简介

principalcomponentanalysis(PCA)主成分分析法是一种数学变换的方法,它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。依次类推,I个变量就有I个主成分。其中Li为p维正交化向量,Zi之间互不相关且按照方差由大到小排列,则称Zi为X的第I个主成分。设X的协方差矩阵为Σ,则Σ必为半正定对称矩阵,求特征值λi(按从大到小排序)及其特征向量,可以证明,λi所对应的正交化特征向量,即为第I个主成分Zi所对应的系数向量Li,而Zi的方差贡献率定义为λi/Σλj,通常要求提取的主成分的数量k满足Σλk/Σλj>0。85。

主要目的

是希望用较少的变量去解释原来资料中的大部分变量,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量。通常是选出比原始变量个数少,能解释大部分资料中变量的几个新变量,即所谓主成分,并用以解释资料的综合性指标。由此可见,主成分分析实际上是一种降维方法。

分析步骤

数据标准化;求相关系数矩阵;一系列正交变换,使非对角线上的数置0,加到主对角上;得特征根xi(即相应那个主成分引起变异的方差),并按照从大到小的顺序把特征根排列;求各个特征根对应的特征向量;用下式计算每个特征根的贡献率Vi;Vi=xi/(x1+x2+……)根据特征根及其特征向量解释主成分物理意义。

应用分析

应用

在社会调查中,对于同一个变量,研究者往往用多个不同的问题来测量一个人的意见。这些不同的问题构成了所谓的测度项,它们代表一个变量的不同方面。主成分分析法被用来对这些变量进行降维处理,使它们“浓缩”为一个变量,称为因子。在用主成分分析法进行因子求解时,我们最多可以得到与测度项个数一样多的因子。如果保留所有的因子,就起不到降维的目的了。但是我们知道因子的大小排列,我们可以对它们进行舍取。哪有那么多小的因子需要舍弃呢?在一般的行为研究中,我们常常用到的判断方法有两个:特征根大于1法与碎石坡法。因为因子中的信息可以用特征根来表示,所以我们有特征根大于1这个规则。如果一个因子的特征根大于1就保留,否则抛弃。这个规则,虽然简单易用,却只是一个经验法则(ruleofthumb),没有明确的统计检验。不幸的是,统计检验的方法在实际中并不比这个经验法则更有效(Gorsuch,1983)。所以这个经验法则至今仍是最常用的法则。作为一个经验法则,它不总是正确的。它会高估或者低估实际的因子个数。它的适用范围是20-40个的测度项,每个理论因子对应3-5个测度项,并且样本量是大的(3100)。碎石坡法是一种看图方法。如果我们以因子的次序为X轴、以特征根大小为Y轴,我们可以把特征根随因子的变化画在一个坐标上,因子特征根呈下降趋势。这个趋势线的头部快速下降,而尾部则变得平坦。从尾部开始逆向对尾部画一条回归线,远高于回归线的点代表主要的因子,回归线两旁的点代表次要因子。但是碎石坡法往往高估因子的个数。这种方法相对于第一种方法更不可靠,所以在实际研究中一般不用。抛弃小因子、保留大因子之后,降维的目的就达到了。

因子旋转

在对社会调查数据进行分析时,除了把相关的问题综合成因子并保留大的因子,研究者往往还需要对因子与测度项之间的关系进行检验,以确保每一个主要的因子(主成分)对应于一组意义相关的测度项。为了更清楚的展现因子与测度项之间的关系,研究者需要进行因子旋转。常见的旋转方法是VARIMAX旋转。旋转之后,如果一个测度项与对应的因子的相关度很高(>0。5)就被认为是可以接受的。如果一个测度项与一个不对应的因子的相关度过高(>0.4),则是不可接受的,这样的测度项可能需要修改或淘汰。用主成分分析法得到因子,并用因子旋转分析测度项与因子关系的过程往往被称为探索性因子分析。在探索性因子分析被接受之后,研究者可以对这些因子之间的关系进行进一步测试,比如用结构方程分析来做假设检验。

问题

1问题的提出主成分分析是一种降维的方法,便于分析问题,在诸多领域中都有广泛的应用。但有些教科书与论文使用主成分分析时,出现了一些错误与不足,不能解决实际问题。如一些多元统计分析的教材中,用协方差矩阵的主成分分析出现了如下错误与不足:①没有明确和判断该数据降维的条件是否成立。②主成分系数的平方和不为1。③没有明确和判断所用数据是否适合作单独的主成分分析。④选取的主成分对原始变量没有代表性。以下从相关性等理论与结果上依次解决上述问题,并给出相应建议。2数据在行为与心理研究中,常常要求分析某种身份的人的行为特征,如本例中的小学生的日常行为特征,从而根据这些特征引导小学生向更积极的行为态度发展。这里用文献[1]的数据见表1,其来自某课题组的调查结果。课题组对北方某小学480名5~6年级学生的日常行为进行调查,共调查了11项指标如下:1~对老师提问的反应、2~对班级事务的关心、3~自习课上的表现、4~对家庭作业的态度、5~关心同学的程度、6~对待劳动的态度、7~学习上的特殊兴趣、8~对待体育锻炼的态度、9~在娱乐上的偏好、10~解决问题的思考方式、11~对未来的打算。

为你推荐